U. S. DEPARTMENT OF THE INTERIOR

GEOLOGICAL SURVEY

RDARL4, a FORTRAN interface for transferring
chemical analytical data from an Applied Research Laboratories

electron microprobe to a POP-11 computing system

by

J. Stephen Huebner

Open-File Report 83-713

This report is preliminary and has not been reviewed for conformity
with U.S. Geological Survey editorial standards. Any use of trade
names is for descriptive purposes only and does not imply endorsement
by the USGS.

CONTENTS

Page
INtroduction —---eoe oo oo e e e 1
Hardware considerations e e mmmmmmmmmmmmmm e ——————e 1
Description of Program =-=--eeeeec oo c o oo a e —— 3
Operator interaction during exeCution =—--eeceemccmccmmcce e 7
Compiling the pProgram ==-=eeeeeemece e ccme e cc e e e e c e e e e e — e 8
References Cited ==-—emmmmo oo e e 9
Appendix I. Description of auxillary mineral programs =---------cceccaaa-- 10
Appendix II. Listing of RDARLS =ccemcm oo e 13
Appendix III. Examples of output:
a. Hardcopy from line printer ~-ececceeocceccoccocccccccccccccccecean 29
b. Format of disk file input for FORTRAN program MINCLC -=---cacecaaaa- 30
c. Format of disc file input for FORTRAN program PXVOID --ceceacaaaaan 30
d. Format of disk file input for FORTRAN program RECAMP —cccccaccaaaa- 31
e. Format of disk file input for BASIC program OXIDES —cecccemacacaaa- 31
f. Description of direct access file (virtual array) =e---eeececceaa-- 32
g. Format of BASIC sequential file for statistics =-e--cecocacecacaaa- 32
h. Format of disk file input for BASIC mineral formula programs ------- 33
i. Format of disk file for analyses of "known-unknowns" e---eceecacaao- 34
j. Format of BASIC sequential file for archiving data =-~---ecescecaceaaa- 35

Appendix IV. On-line instructions for using RDARL4 —cccommmmomccaaoo 36

TABLE

Table 1. Structure of file of analyses created by microprobe -----eecee--- 38

INTRODUCTION

Microprobe analysis at the U.S. Geological Survey does not end
when a complete chemical analysis is obtained by the operator. Rather,
an increasing number of USGS operators want to reconstitute their chemical
analyses as atomic mineral formulas, norms of endmember mineral composi-
tions, or compositional projections. In the future, operators will want
to select analyses to construct data files for plotting and for statisti-
cal analyses. The traditional method of manually transcribing analyses
from microprobe printout to another computing system is laborious and
prone to transcription errors. RDARL4 is a machine interface between
data files created by the microprobe and the BASIC and FORTRAN programs
available in Reston for recalculating and plotting microprobe data.

The electron microprobe used in the USGS's Reston Microprobe Facility
is a model SEMQ (Scanning Electron Microprobe Quantometer) manufactured
by Applied Research Corporation (ARL) of Sunland, California. This
instrument collects chemical data for up to 9 elements simultaneously
or up to 14 elements asynchronously. Chemical analyses are reduced on
line and may be stored on disk if the operator so chooses. Operators
may obtain 100 to 170 analyses per 4 hour operating shift. Despite the
high rate of productivity, demand for access to the microprobe is great.
The efficient use of both the microprobe instrumentation and the large
volumes of data obtained has been a major concern of the Reston Microprobe
Facility staff. Use of the program RDARL4 permits operators to transfer
large volumes of data to other computers quickly, accurately, and without
competing for valuable instrument time.

HARDWARE AND SOFTWARE CONSIDERATIONS

The ARL-SEMQ microprobe automated control system is built around
the PDP-11 series of computers and peripherals manufactured by the Digital
Equipment Corporation (DEC), specifically the LSI-11/23 processor and

RX-02 floppy disk controller and drive, The PDP-11 series of equipment
is commonly used for control of major laboratory instrumentation and is

available "off-line" elsewhere in the microprobe facility. DEC makes
available software based upon its RT-11 operating system. This software
permits data to be stored in words that are 1, 2, 4, or 8 bytes in length.
The microprobe operating programs are written in Applied Research Labora-
tories Extended Basic (ARLEB) language and use assembly language subrou-
tines and functions that can be called from ARLEB. Although the ARL

system utilizes a conventional DEC processor and diskettes, ARL's soft-
ware for disk storage uses a different disk directory and writes only 6-
byte data words (cailed "entries"), a word length that is not supported

by DEC. Stored on a RX-02 disk, an ARLEB data record is 42 6-byte entries
long. Each entry contains one numeric value (or up to six ASCII characters).

A compact ARLEB disk storage routine was written in ARLEB language
by James J. McGee of the USGS and inserted into the microprobe control
program. This routine stores all the analytical information that most
USGS operators want to retain. The first record of the data storage file
contains instrumental parameters that are common to all microprobe analyses
that follow in the file. Each subsequent record contains information for
one analysis: title, stage position coordinates, and chemical analysis
in terms of weight percent and cation formula unit (Table 1). Disk
storage files are created during a microprobe operating session; after
the operating shift the operator removes the data disk and either stores
it for later use or goes to an off-line computer to retrieve the data.

Off line computing equipment utilizes the DEC LSI-11/23 processor,
RX-02 disk controller and disk drives, a video terminal, and a line
printer. The off-line equipment is completely compatible with the computing
equipment that controls the microprobe. This interchangeability of hardware
means that the only interfacing problems involve using the DEC RT-11
family of software to access a disk written under ARLEB. Fortunately,
ARL provides "RT-LIB", a library of compiled MACRO (DEC assembly language)
program modules that can be called from a FORTRAN program running under
the RT-11 operating system whenever it is necessary to access the ARLEB
disk. Once microprobe data has been read into an RT-11 based system, it
is possible to create new disk files of any of a variety of file types:
sequential (ASCII character) with either FORTRAN or BASIC carriage con-
trol and direct access (binary). This enables a USGS scientist to use
any of a number of different programs (Appendix I) to recalculate the
analytical data.

Program RDARL4 will read a data file that contains 100 or fewer
analyses of 1 to 14 elements each. It will run under the RT-11 operating
system in a PDP-11 minicomputer that has 64 kbytes of lower program
memory and 18.2 kbytes of virtual memory for numeric and character arrays.
The version described here is a general "brute-force" program designed
to run quickly and to offer many options which can be executed without
rereading the ARLEB data disc. The program could be easily modified to
run in a smaller memory by decreasing the number of elements allowed per
analysis, limiting the number of analyses that can be processed at one
time, decreasing the number of output options, and/or by making uniform
the data input requirements of the programs listed in Appendix I. Although
the FORTRAN portion of the code could be easily modified to run under
another operating system, numerous calls are made to modules of the
"RT-LIB" library which, because it is written in PDP-11 assembly language,
is not readily transportable to systems that do not use the PDP-11 family
of processors. Conversion to a non-DEC system would be difficult and
timeconsuming. ' :

DESCRIPTION OF PROGRAM RDARL4

The program (Appendix II) has four major parts: definition and
initialization of arrays and variables; reading of the ARLEB data disk;
creation of output files; and subroutines to report disk errors and to
handle commonly used interactions with the operator.

Program RDARL4 uses buffer arrays (DATA, IBUF) to hold information
from a single record of the ARLEB data disc file from the time the record
is read until its contents can be transferred to larger arrays that store
all the titles, weight percent values, cation numbers, and stage coordinates,
etc., that appear in a disk file (up to 101 records). These storage
arrays have nmemonic names (for instance, ITITLE, WTPCT, PEROXY, CATION)
and will be discussed in conjunction with program execution, below. Also
important are the byte arrays (such as BPXVD and BOXIDE) that are used
to store element names in the sequence that they will be written out for
a given output option. These byte arrays are filled with the necessary
ASCII characters using DATA statements.

Initial program execution involves keyboard input of the name of the
ARLEB data file. The program then calls FIND, an RT-LIB module that ac-
cesses the ARLEB disk directory and returns the position, length (ISIZE),
and ARLEB file-type (ITYPE, BFKIND), and an error code (IERR). The next
call to RT-LIB, OPEN, opens the designated file for reading and returns
only an error code. Each record is then read twice because there is no
way to read a partial record, yet each record contains both ASCII and
numeric information which must be handled differentiy. First, FDGET is
used to retrieve ASCII information by returning the contents of the re-
cord, byte-by-byte, in an integer buffer array IBUF. Next, FFETCH reads
the ARLEB record as a block of 42 6-byte numeric entries, converts each
entry to a 4-byte floating point format, and returns the converted contents
in the floating point buffer array DATA.

The first record of the ARLEB data file contains operating parameters
that are common to all subsequent analyses, including the analyst's name,
date of analysis, names of elements analyzed (in the sequence in which
concentration data are to be stored), a 4-character abbreviation for the
standard used for each element, and the X-ray line used to analyze each
element. The complete 1ist of contents of this first record is given in
Table 1. FORTRAN code to select ASCII and numeric information for the
first record from the buffer arrays IBUF and DATA and to place that in-
formation in more permanent variables and storage arrays in memory is
used only once during each program execution.

Each subsequent record contains information that pertains to a single
analysis. The program contains a loop to read and store these records,
one-by-one. Exit from the loop is determined either by reaching the last
block of the ARLEB file (ISIZE) or by encountering an analysis with a
weight percent sum equal to zero. (The test for this condition is included
because an ARLEB disk file is not necessarily completely filled with analyses.)

The information retrieved and stored is also listed in Table 1 and for
each analysis includes a title, weight percent values, cation and anion
numbers, and a flag (IAVLFG) which indicates analysis type and number of
points averaged.

Execution of RDARL4 next gives the operator the choice of 11 output
formats that may be used in almost any combination. The only restrictions
are that reviewing the analyses on the video terminal, if that option is
chosen, must be first and that sending the analyses to a lineprinter must
precede creation of output files on disk. Simple reordering of blocks of
code (and some renumbering of statements) would remove this constraint on
operations.

The video terminal option is useful for operators who want to review
the analyses in a data file, perhaps because they do not remember exactly
the contents of a particular disk file. The format of the display is
compact and includes all analyses in sequence. The lines displayed
exceed 80 characters in length; operators who want to use this option
may first want to set the video terminal for a 130 character line length.
The only information displayed from the first record is the element
names. The remaining information stored on the first record can be
examined with the lineprinter (see below).

The line printer option gives a hard copy of the contents of the
first record (operating parameters common to all analyses), then lets
the operator specify the particular analyses to be printed (subroutine
SELECT). Analyses need not be specified if only a record of the microprobe
operating parameters is desired. An example of the printout is included
in Appendix IIla.

The following 9 options create disk files that can be used as input
to supporting programs for mineral formula calculations, plotting, and
other uses. (A tenth option, EXIT, terminates program execution.) Existing
programs for which 5 of the 9 options were specifically prepared are
briefly summarized in Appendix I. Data input to most of these programs
is in the form of sequential files so that they may be viewed (on a
video terminal or printer) and edited. The choice of sequential files
also permits an operator to create an input file with an editor, without
using RDARL4, To facilitate editing operations, these sequential files
include the symbols of elements analyzed, whether or not an auxillary
program actually uses the element symbols (as in Program MINCLC) or
merely reads and ignores them (as in the Programs which use disk files
created by Options 2, 3, 4, and 7).

A11 auxillary mineral formula programs except MINCLC require
concentration data that is predetermined with respect to the nature of
required elements and the sequence in which they appear. The microprobe
operating system has no constraints on the number, nature, or sequence
of elements analyzed and stored in an ARLEB data file. The reading and
storage of data by RDARL4, as previously described, preserves the original
number, nature, and sequence of elements in the byte array BELNAM. The new

sequence in which element data (one datum is two ASCII character element
symbols followed by a floating point numeric concentration value) are to
be put out is determined by comparing BELNAM, byte-by-byte, with an
array such as BOXIDE, BPCVD, BCAMP, or BBASIC that contains the desired
element symbols in the correct sequence:

DO 965, I=1,13

IFLAG=0

DO 965, J=1,NELMTS

IF (BELNAM(1,J).NE.BOXIDE(1,1)) GOTO 963
IF (BELNAM(2,J).NE.BOXIDE(2,1)) GOTO 963
KCOUNT(1)=J

IFLAG=1

963 IF(IFLAG.EQ.1) GOTO 965
KCOUNT(1)=16
965 CONTINUE

Whenever two pairs of bytes match (the element symbols are the same), the
position of the desired element is stored in array KCOUNT. If no match
is found (microprobe analysis did not include an element expected by the
auxillary program), the array element is set to 16. Thus KCOUNT contains
the sequence in which element concentrations are to be written out from
WTPCT and CATIONS. A value of 16 will cause a WTPCT value of 0.00 and a
CATION concentration of 0.000 to be written to the disk file. Array
KCOUNT is used in implied DO LOOPS to control the actual sequence in
which data are written from BELNAM and WTPCT or CATIONS to disk:

968 WRITE(2,971) N,IAVFLG(N),(ITITLE(L,N),L=1,24)

D0 970, I=1,13

WRITE(2,972)(BOXIDE(J,1),J=1,2) ,WTPCT(KCOUNT(I),N)
970 CONTINUE

The routine for constructing an input file for the general mineral
formula program MINCLC is different. MINCLC can be configured to operate
upon different sets of elements; at present the set consists of elements
with atomic numbers 1 to 30 (hydrogen through zinc), although it could be
changed or enlarged. During execution, MINCLC identifies the elements to
which each concentration datum pertains, regardless of the number of the
elements or their sequence in the input file. Program RDARL4 does not,
therefore, contain code to write out elements in a particular sequence.
Rather, the code is designed to write out only a number of data fields
corresponding to the number of elements that were actually analyzed;
records that contain fewer than 8 elements contain "$$" to indicate the
last element-concentration pair of an analysis. RDARL4 also writes an
initial record that tells MINCLC what to do ("****RDOXIONS" plus the
number of anions and cations in the formula unit) and a title (from
ITITLE) that preceeds each analysis. Here another advantage of creating
an output file that can be edited becomes apparent: if the operator
includes more than one kind of mineral in a file created for MINCLC, he
may want to change the formula basis by inserting additional control
records (indicated by the initial "****") in that file.

Four disk file options were not designed to create an input file for
a mineral recalculation program. Option 5 (BASIC virtual array) creates
a direct access file for programs that have not yet been written. Both
weight percent values and cation numbers are put out to the disk file,
Option 6 creates a sequential file that can be used as input to the MINC
BASIC statistical programs provided by DEC. Either weight percent values
or cation numbers are put out. Option 8 (filing of "known-unknown" anal-
yses) was written so that all analyses of well-characterized material
(used to gage the quality of microprobe operation) can be filed for later
use. Two uses are anticipated: detect and examine changes in microprobe
performance with time; and evaluate the suitability of particular standards
for particular elements and mineral groups. Option 8 stores operating
parameters and weight percent values, hut not cation numbers. Option 9
creates a sequential file that can be edited, searched, and concatenated
using a keypad editor or BASIC language routines written by Elaine McGee
of the USGS. In this manner, an operator can sort analyses into groups
for plotting or archiving.

Four segments of code have been placed in subroutines because they
are either unlikely or very likely to be called into use. Errors in
reading the ARLEB disk or writing the DEC disk are rare, but if an error
is encountered, the main program calls subroutine ERRORS, prints a brief
description of the particular disk error encountered, and either halts
execution (ARLEB disk error) or returns to the main program (DEC disk
error). The other subroutines are used frequently.

Subroutine SETUP reminds the operator of the name of the ARLEB file
by displaying it on the videoscreen, then asks the operator to provide a
name for an output file that is to be written on disk. Because analyses
from a microprobe operating shift can be used many different ways, opera-
tors may want to retain the ARLEB file name and append a file type that
indicates the intended use of the output file. Thus, the ARLEB input
filename "D1027" could be used in output files for several mineral recal-
culation programs, for example, D1027.MNC, D1027.PXV, and D1027.FEL.

Subroutine SELECT asks the operator to select the analyses that will
be sent to the line printer or written to a disk file. The operator has
several options: averaged analyses of unknowns; all the known-unknown
analyses; or analyses, individually or in groups, designated by the sequence
number (NANAL) in which they appeared in the ARLEB file and are, during
execution, stored in arrays in memory. Each analysis is associated with
a variable (IAVFLG) that indicates how many points were averaged to produce
the analysis. Furthermore, if that analysis is of a "known-unknown", that
is, an analysis of a well characterized material such as a microprobe
standard that is used to gage overall system performance, the value 80
has been added to the number of points averaged to indicate that the
analysis is of a "known-unknown". Thus averages of unknowns are those
analyses with IAVFLG greater than 1 but less than 80 and "known-unknowns"
are analyses with IAVFLG greater than or equal to 80.

Subroutine CHOICE gives the operator the possibility of adding
analyses to the current output file; that file is not closed until the
operator responds "N" to the question posed by CHOICE.

OPERATOR INTERACTION DURING EXECUTION

Operators should have some understanding of the flow or sequence of
routines before attempting to run RDARL4. In Reston, the disk which con-
tains the program contains a file of instructions (Appendix IV) that are
printed at the video-terminal whenever the computer is started. The actual
program begins by instructing the operator to place an ARLEB disk in
drive #1, the right-hand drive on an RX-02 disk unit. After reading the
file, the operator is first asked if the microprobe analyses are to be
viewed on the video terminal; next, whether or not a printout is desired;
and finally, whether or not a disk output file is to be written. If a
disk file is to be created, the operator is given the choice of 9 file
options or an exit from the program. Each of the disk options ends with
an opportunity to select another option so that more than one kind of
disk file can be produced without rereading the ARLEB disk. If another
option is not selected, the operator has an opportunity to loop back to
the beginning of the program to start again with a new ARLEB data file.

During execution, RDARL4 provides the operator with numerous prompts
for information. These prompts are designed to be self explanatory, par-
ticularly if the operator has run the program before. However, operators
will want to prepare in advance to respond to questions that involve more
than a Y (yes), N (no), or C (continue) response. These questions
concern:

Name of ARLEB data file (5 characters maximum)
Use to be made of the disk output file, if any (option number)

Output filename in format DYn:xxxxxx.YYY
where n=0 or 1 (12ft or right disc drive, respectively),
and YYY represents a file type (default DAT). Suboutine SETUP.
Cation to anion ratio (Option 1 - MINCLC output file) in the floating
point format (F12.7, F12.7). For example, "4.0, 6.0" is an
acceptable response

Weight % or cations (Option 6)
Number of analyses to be put out (Option 6)

Choice of individual analyses, averages only, or both
(Option 8 - Extraction of "known-unknown" analyses)

Choice of selecting averaged unknown analyses, all "known-unknown"
analyses, or designated analyses for most options. (Subroutine Select)

If the operator intends to use RDARL4 to create an output file on a
disk in drive #1, that disk must have already been formatted when it is
exchanged for the ARLEB disk during execution.

COMPILING THE PROGRAM

RDARL4 was compiled without overlays under DEC's RT-11 single job
monitor that had been patched to load at address 28000 (to enable support
for virtual memory arrays). The program is long; as listed in Appendix
IT the "no Tine-numbers" option of the compiler must be used. A command
file for compiling and linking is given below. RTLIB and RX02 are contained
in an ARL software kit, V.1.2-99.

DATE

TIME

FORTRAN/EXTEND/LIST:TT:/SHOW:0/NOLINENUMBERS/OBJECT:DY1: RDARL4
RLINK

RDARL4=DY1:RDARL4,DYO:RTLIB,RX02

C

TIME

References

Smyth, Joseph R. (1980) Cation vacancies and the crystal chemistry of
breakdown reactions in kimberlitic omphacites. American Mineralogist,
vol. 65, p. 1185-1191.

Stormer, J.C., Jr. (1983) The effects of recalculation estimates of
'temperature and oxygen fugacity from analyses of multicomponent

oxides. Amer. Mineral., vol 68, 586-594.

Appendix I: Brief descriptions of auxilliary mineral formula programs

In this appendix, references to variable and array names will be
capitalized as they are in Program RDARL4, Appendix II. Examples of
printable input files are given in Appendix III; the input files are
the disk files generated by RDARL4.

Option 1. MINCLC is a FORTRAN program for converting a weight percent
analysis to an oxygen-based formula unit. The program will attempt to
achieve a specified cation-to-anion ratio by adjusting the proportions
of the various valence states of the multivalent elements Ti, Cr, Mn,
and Fe, if present. If the specified cation:anion ratio is 4:6, the
program will calculate an idealized pyroxene site occupancy and pyroxene
formula norm. It will also accept anions which substitute for oxygen.
MINCLC was written in 1977 for punched card input by Phelps Freeborn,
then of the USGS. When it was converted to run on an RT-11 based system
by Huebner, January 25, 1982, the options were simplified and data input
was made to be from a disk file, but the data format was left unchanged:

****RDOXIONS 0XYgens CATions

NANALysis, TITLE: ITITLE

up to eight pairs of element symbols (BELNAM) and WTPCT
ditto; input terminated by $$

NANAL (etc.)

The first byte in the input file is a non-printing FORTRAN carriage control
character, ASCII line feed.

Option 2. PXVOID is a FORTRAN program that recalculates pyroxene analyses
to a pyroxene formula unit based upon six oxygens. Unlike MINCLC, PXVOID
considers the possibility that deviations from the ideal 4:6 cation:oxygen
ratio of pyroxenes are real and caused by nonstoichiometry. As originally
written by Smyth (1980), data was input from the keyboard during execution.
When converted to run under RT-11 by Huebner, March 7, 1982, data input
was changed to be from disk file. The file format is similar to MINCLC
with the following exceptions. The control record beginning with ****

is replaced by an integer, 1 to indicate oxide weight percent input or O
to indicate element weight percent (the corresponding RDARL4 variable is
NTYPE). Element symbols are written in the required sequence from array
BPXVD. The first byte in the input file is the non-printing FORTRAN
carriage control character, ASCII line feed.

10

Appendix I (continued)

Option 3. RECAMP is a FORTRAN program that recalculates an amphibole anal-
ysis to several different formula units, using different assumptions. This
program was originally coded by F. Spear and K. Kimball of the Massachusetts
Institute of Technology, November 10, 1981, and requested that data be input
from the keyboard. For USGS use, the program was modified by J.S. Huebner,
March 3, 1982, to accept data from a disk file. The disk input file is
particularly simple:

NANALysis - ITITLE
9 pairs of element symbol (BCAMP) and oxide WTPCT,

Because the order of the elements is fixed, it is not necessary to include
element symbols in the list. They were retained to facilitate examination
and editing of the input file. The first byte of the input file is the
non-printing FORTRAN carriage control character, ASCII line feed.

Option 4. OXCALC (following Stormer, 1983) is a BASIC program that converts
microprobe chemical analyses of spinel and ilmenite to formula units and
mole fractions of ulvospinel and magnetite in preparation for estimates

of the temperature and pressure of last equilibration. OXCALC was modified
by J.C. Stormer, February 18, 1983, for input of data from disk. Program
RDARL4 contains a format statement that suppresses the initial non-printing
FORTRAN carriage control character so that the file can be read under the
BASIC operating system:

OPEN(UNIT=2,NAME=F ILSPC,CARRIAGECONTROL="FORTRAN")
WRITE(2,966) NTYPE
966 FORMAT('+',11)

The analyses which follow consist of 14 records each:

NANALysis, ITITLE
13 pairs of element symbol (BOXIDE) and WTPCT

Option 7. AMPHI, MICA, CORD, FELDS, CHLOR, and GARN, are BASIC language
programs written by Marta Kempa Flohr of the USGS to calculate mineral
formulas, including formal site occupancies, for amphiboles, micas,
cordierites, feldspars, chlorites, or garnets, respectively. These
programs require oxide or element weight percent concentration data for
18 elements in the order in which the element symbols appear in byte
array BBASIC. Program RDARL4 writes a sequential file without the
initial byte of FORTRAN carriage control. The contents of the file are
as follows:

NTYPE (0 = element, 1 = oxide weight precent)

BBASIC (18 records, each containing an element symbol)
NANAL, ITITLE for first analysis in file

11

IQFILE (name of standard file), PEROXY (number of oxygens in cation's
formula unit)
WTPCT value for silicon (first element), CATION value for silicon

b4 b

.
LTI 'Y

WTPCT value for chlorine (last element), CATION value for chlorine
NANAL, ITITLE for second analysis in file

Option 9. This option creates sequential files on disk that can be
concatenated and edited. Analytical data is read out in the order in

which it was stored on the ARLEB disk. The initial byte of FORTRAN
carriage control is supressed so that the file created with this option

can be searched and concatenated with a BASIC language program or an editor.

NELMTS, ***_ PEROXY

BELNAM elements analyzed, listed one element-per-record
NANAL, ITITLE, PEROXY, IAVFLG

WTPCT, CATION first element is silicon

s

v v v v

WTPCT, CATION last element is chlorine
WTPCT (15), CATION (15) weight percent and cation sums
NANAL, ITITLE

The file does not contain an initial FORTRAN carriage control character.

12

isExEvErEoivEvirivEsivEsRels ool EoErEsNrioEe N RelrNe s v R e Re RER ALY

13
Appendix II. Listing of Program RDARL4

RODARL4.FOR FERMITS AN RT-11 RASED SYSTEM TO READ AN ARL DATA DISK.
ROARL.OEJ LINKS TO ARL’S RTLIE, A COLLECTION OF COMPILED MACRO UTILITIES
THAT FERFORM VARIOUS DISK OFERATIONS AND CONVERT NUMERIC DATA FROM THE ARL
3-WORD TO THE DEC 2-WORD FF FORMAT WHILE FRESERVING ASCII INFORMATION.

WRITTEN BY J & HUEEBNER AS RDARL1.FOR MARCH,» 1982 (NUMERIC ONLY) AND
AS RDARLZ.FOR ON JULY 13, 1982 (NUMERIC & ASCII)
QUTFPUT. OFTIONS RY HUEENER, WRITTEN AS NEEDED. LAST EDIT 06/15/83

ARLEEB USES A& BLOCK OF 42 4-BYTE ENTRIES. FORMAT OF DATA FILED BY THE ARLER
STORAGE ROUTINE WRITTEN BY MCGEE FOR THE USGS RESTON FROBE FACITLTY!

FIRST RECORD CONTAINE OFERATING FARAMETERS!

ENTRY NUMEBER CONTENTS ROARL4 VARIARLE NAME
1 - 4 OFERATORS’ NAME I0FNAM
S - 7 ARL SYSTEM DATE IARDT
8 NAME OF XQFILE IGFILE
g NAME OF DATA OUTFUT FILE IARLOT
10 DATA REDUCTION FLAG NREDCT
11 NUMBER OF ELEMENTS ANALYZED NELMTS
12 OXIDE OR ELEMENT WT % FLAG NTYFE
i3 TEMFORARY COUNTER USED BY ARL NCOUNT
14 FUTURE USE NOUSED
15 - 28 ELEMENT NAMEsX-RAY LINE RELNAMBEXRLIN
29 ~ 42 STANDARD NAME RSTAND
SUBSEQUENT RECORDIS CONTAIN ONE ANALYSIS EACH
1 -8 TITLE ITITLE
9 " STAGE FOSITION X X
i0o STAGE FOSITION Y Y
11 AVERAGING & KNOWN-UNKNOWN FLAG IAVFLG
12 - 25 WEIGHT FERCENT WTFCT
264 TOTAL WEIGHT FERCENT WTFCT
27 - 490 CATION NUMEBERS FER FORMULA UNIT CATION
41 SUM OF CATIONS CATION
42 NUMBER ANIONS FER FORMULA UNIT FEROXY
DIMENSION DATAC(42) lbuffers numeric records from FETCH
DIMENSION IRUF(128) tpbuffers ASCII records from FOGET

INTEGER IOFNAM(12)yIQFILEC(3)sIARLOT(3)sKCOUNT(14) »UFFERYNAME(3)
INTEGERX4 ITIME

BEYTE BFILNM(13)yBFKIND(18)»BSTAND(4,14)yRBUF(256)

BYTE BELNAM(2s14)syBXRLIN(2y14)FILSPC(1S) BFLAGLyBFLAG2sBFLAG3
BRYTE BRPLYOSEBFXVD(2y13)sRCAMF(2»2)»BBASIC(2+18)yBOXIDE(2y13)
VIRTUAL ITITLE(24s100)sWTPCT(16+s100)yCATION(16,100)

VIRTUAL NANALC100)»IAVFLG(L00)»PEROXY(100)sX(100),yY(100)
EQUIVALENCE (NAMEC1)syBFILNM(S))+ (BBUF(1)IBUF(1))

COMMON BFLAG1yBFLAG2yBFLAG3

ODATA BFILNM/ /D’ s 'Y 9 1 9"t/ s "D/ s’E'y " F v A »’L "y’ T 26%0/

DATA BFKIND//'B ' v’A 'Sy "1’ y'C'y’ "¢'S " y'Y ' 1'S's'T'"y'E"v' M
S0 s’A’y’'T’s’Q" s’ ‘9’ '/ ‘ .

DATA BPXVUD//S 9’17y "7 “y’A" s 'L s'T 9’1 'y’'C'y'R"s’F’y’C"y
8'F','EI,/MI,'G/,’M"lNI"CI'IAf'ILI’II"INI,IAI,/K/,I f/

DATA BCAMF//N/ s’A y ' M/ y/'G vy Ay’ L" /S s/1"'9’'K"y’ "4y’C’'s"4"y
E'T s'I’ sy M y'N"y'F'y'E"/

DATA BOXIDE/“ S s I s/’T 2T’ s’A s’ L 2"V’ “s'C’y'R’s'F’'y’C’»

S F y’E’y'M s'N' s’ M y’G" v’'C’s’0'y’Z " s'N"y/'N's’'I’y'N’"s'B"/

14

Appendix II. Listing of Program RDARL4. (continued)

BATA BBASIC//S v 17y T s’ s’ y’'L sy 'F’y’'C’y'C’'»'R"»'F’ "y E’»
E'Z s 'N y'M’ y'N"y'N" v "1y "M +'Gy’C’'y'A"s’S’"+y'R’+'RB'+"047,
SN y’Q’y'K"y" "y'F7y’ "9'F 'y’ "y'C'y' L7/
C
C INITIALIZE VARIABLES AND GET SYSTEM DATE AND TIME
C
TYFEXy " ~’
TYFEX,'FROGRAM RIARLA FERMITS RT~11 TO READI ARLEBR DATA FILES.’
TYFEXys"IT WAS WRITTEN BRY J § HUEBNER FOR THE RESTON FRORE FACILITY.’
TYFEXy THIS VERSION WAS COMFILED 04/15/83.°
CALL IDATEC(IDATEL1»IDATEZyIDATE3)
IF(IDATE2.EQ.0Q) STOF ‘SET SYSTEM UDATE AND TIMEy THEN BEGIN AGAIN’
CALL GTIM(ITIME) '
CALL CUTTIM(ITIME, IHOURSyIMIN,ISECSITICK)
199 BFILNM(15)=0
IDRIVE=1
200 IERR=0Q
IREC=0
TYFEXy’
TYFEXs "FLACE DISK WITH ARLEER DATA FILE IN DRIVE DY1:!“
TYFEXs ©
TYFEXy "ENTER THE ARLEER FILENAME’
TYFEXy " (ARLER accerts no more than 9% characters for the filemanme.l’
ACCEFT 210 sNANME

210 FORMAT(3A2)

c

C FIND AND OFEN THE ARLER OUTFUT DATA FILE

C
TYFEXy " -
TYFEXy ‘The disk access and data transfer will bedin.’
ICHAN=IGETC ()
TYFEXy 'Channel "yICHANs* zllocated by the comruter.,’
CALL FIND (NAMEsIDRIVEYIADD»ISIZESITYFEsIERR)
IF(IERR.NE.~-1) CalLL ERRORS{IERRyIREC)
IFCITYPE-2) 310+320+330

310 N=1
GOTO 340

320 N=7
GGTO 340

330 N=13

340 TYFE 2SO0 sNAME s (BFKINDCI)»I=NsN+5)yIADDYyISIZE
330 FORMAT(1HO»3A2y’ is a "26A1y’ file whase first record ig ‘s/s»1H
i’block ‘sI4y’ and whose lendgth is 913y’ blocks of 128 words.’)
CALL OFEN (NAME,S,IDRIVE,IERR)
IF(IERR.NE.-1) CaALL ERRORS(IERRyIREC)

Cc

€C READ THE ARL OUTFUT FILEy BLOCK RBY BLOCK, REFORMAT EACH RECORD (BLOCK)

C FOR STORAGE IN ARRAYSsy AND DISFLAY HEADIER INFORMATION ON VIDEO SCREEN

C
IREC=1 tread $QSET and $FSET information
CALL FDGET(IBUFyIADDOyIDRIVEyIERR) Ifirst without format conversion

IF(IERR.NE.~-1) CALL ERRORS(IERRsyIREC)
DO 129 I=1+256
IF(BBUF(I1).EQ.0) BBUF(I)="040
129 CONTINUE
CALL FFETCH (IRECYIDRIVE»DATA»IERR) lwith 3 to 2 word format convers.

- ;
Appendix II. Listing of Program RDARL4. (continued) 15

134

172

IF(IERR.NE.~1) CALL ERRORS(IERR(IREC) lassidn it to variablesy arraus:?
no 130 I=1,12

IOFNAM(I)=IBUF (I)

CONTINUE

IAROT2=DATA(S)

IARDT1=0ATA(S)

IARIT3=DATA(7

00 134 I=1,3

IQGFILECI)=IRBUF(I+21)

IARLOT(I)=TIBUF(I+24)

CONTINUE

NREDCT=DATA(LO)

NELMTS=DATA(LL)

NTYFE=DIATA(L12)

NCOUNT=DATA(13)

NOUSED=DATA(L4)

Do 150 J=1+14

DO 145 I=1+2

BELNAMCI» J)=BRUF (&££J+78+1)

EXRLIN(I»J)=RBUF (6%J+81413

CONTINUE

D0 150 I=1+4 :

ESTAND(I» J)=BRUF (&6XJ+1463+1)

CONTINUE

TYFE 152y (IOFPNAM(M) sM=1,12)

FORMAT(1HOQ:’THE MICROFRORBE OFERATOR WAS “s124A2)

TYFE 153IARDT2yIARDTLIARDT3

FORMAT(1H »’'DATE ANALYSES MADE:! ' sI12s =" 312, ~-197,12)

TYFEXs *

FORMAT(9H ELEMENT (I35’ is ’“s2A1y1Xs2A1s’ with standard ’s4A1)
D0 160 K=1sNELMTS

TYFE 155yKy (BELNAMC(IsK) s I=1s2)y (BXRLINCIsR)»I=1y2)y (BSTANDC(IsK)I»I=11r4)
CONTINUE

TYFEXy "

TYFPEXy’I AM STILL READING THE ARLEE DATA DISC - PLEASE BE PATIENT!”
TYFEXy " -

N0 175 IREC=2+1SIZE lread $ANLZ outrput data
KOUNTR=IREC-1 tcount ¥ of analuysis
CaLL FODGET(IRBUF»IADD+IREC-1»IDRIVEIERR) 'no format conversion
IF(IERR.NE.-1) CALL ERRORS(IERRysIREC)

00 1653 N=1,256

IFC(BBUF(N).,EQ.0) BEUF(N)="040

CONTINUE

CALL FFETCH (IREC»IDRIVEsDIATAyIERR) 13 to 2 fmt conversion
IF(IERR.NE,-1) CALL ERRORS(IERR,»IREC)

IF(DATA(26) JEQ.0) KOUNTR=KOUNTR-1 tlasttl has wtZ=0.00

IF(DATA(26).EQ.0.) TYPEX, LAST ANALYSIS IS #’'/,KOUNTR
IF(DATA(26).EQ.0.) GOTO 176

NANAL (KOUNTR)=KOUNTR

DO 172 L=1,24

ITITLE(Ly»KOUNTR)=IRUF(L)

CONTINUE

X(KOUNTR)=DATA(?)

Y(KOUNTR)=DATA(10)

TAVFLG(KOUNTR)=DATA(1L1)

00 174 M=1,15

; 16
Appendix II. Listing of Program RDARL4. (continued)

WTPCT(MsKOUNTR)=DATA(M+11)
CATION(M) KOUNTR)=DATA(M+26)
174 CONTINUE
PEROXY (KOUNTR)=DATA(42)
175 CONTINUE
176 CONTINUE

C

C REFORT END OF READ AND STORE-IN-ARRAY OFERATION

C
LBLOCK=IREC+IALD-1
TYFE 380

380 FORMAT(1HOYy I JUST FINISHELD READING THE ARLEER DISC.?)
WRITE(Z7¢+381)LELOCK

381 FORMAT(1HO “ The last block read has number “»14)
TYFEXs’ ~

382 TYFEX s "XEXKKKKEKEKKKX REMOVE ARLER DISC FROM DRIVE DY1$ RXKKKKEKKKEKEXKK'
TYFEXy’ ~
TYFEXy THEN TYFE (G) TO CONTINUE~
ACCEFT 701sIFLAG
IF(IFLAG.NE.’C”) GOTO 382

C

C VIEW DATA ON CRT

C

401 TYPEXy "EXAMINE ANALYSES WITH VIDEO TERMINAL (Y or N)T7

ACCEFT 701y IRFLYO
IFCIRFLYOWNE. "Y' .AND.IRFLYO.NE.'N’) GOTO 401
IF(IRPLYO.NE.’Y’) GOTO 703
00 410y I=1,KOUNTR
NUMAVG=TAVFLG(I)
IF(IAVFLG(I).GE.B80) NUMAVG=NUMAVG-80
TYPE 732sNANALCI) y(ITITLECSs) s Jd=1+24)
IF(C(IAVFLGCI) .NELO) ,ANDL. (TAVFLGC(I) NE.BO)Y) TYFE 44%5:NUMAVG
TYFE 733y ((BELNAM(JrK) v J=142)yK=1/,14)
TYPE 734y (UTPCT(JyI2sd=1+15)
TYFE 73Sy (CATIONCJ»I) rJd=1+13)FEROXY (D)
445 FORMAT(1H ¢ ’AVERAGE OF ‘+I2)
410 CONTINUE
C
C PRINT OUT DATA STORED IN ARRAYS
c
701 FORMAT (A1)
702 FORMAT(I3»IZ)
TYPEXy " ’ .
703 TYPEXy "PRINT OUT HARD COFY OF DATA? (resrond Y or NY’
ACCEPT 701sIRFLY1
IFCIRPLYL.NE. Y’ .AND.IRPLY1.NE."N’) GOTO 703
IF(IRPLYL.NE.’Y’) GOTO 800
PRINT 710
710 FORMAT(1H »“RDARL4 ENABLES RT-11 TO ACCESS CHEMICAL ANALYSES
&§ STORED IN ARLEER FORMAT BY THE RESTON ARL/SEMQ MICROFROBE’)
PRINT 711
711 FORMAT(1HOs "IT WAS WRITTEN.-RY J S HUEBNER FOR THE RESTON
& MICROFROEE FACILITY AND COMFLETED JUNE 15, 1983‘)
PRINT 7212,IDATEL»IDATEZ» INATEZy IHOURS Y IMIN
712 FORMAT(30HORT-11 RUN DATE AND TIME WERE yIZ2y’="»12y’-19'+12,
&7 AT 72129707 412)

751

731

732

17

Appendix II. Listing of Program RDARL4. (continued)

FPRINT 721y (IOPNAM(I)sI=1+s12),IARDT2+IARDT1sIARDT3
FORMAT(22HOMICROFROBE OFERATOR! s12A2y235Xs ‘MICROFROBE ANALYSIS

& DATE “yI2s/='912y7~-197512)
FRINT 722, (IQFILEC(I)sI=1+3)s (IARLOT(I)»I=1,3) tinteder

FORMAT(4OHOTHE TITLES OF THE %QSET INFUT AND $ANALZ QUTFUT
§FILES WERE »3A2y’ and ’'»3A2)

FRINT 723

FORMAT(1HO» ’ ELEMENT X-LINE STANDARD)

0 724 J=1,NELMTS

dTTra4ds

FRINT 725 (BELNAM(I»J)sI=1s2)» (BXRLINCI»J)sI=192)y (BSTAND(IyJ)»I=1+4)

CONTINUE

FORMAT(1H +5Xs2A41+10X»2A1,10Xy4A1)

FRINTXy " ~

IF(NTYFE.EQ.0) FRINTXs 'ANALYSES STORED AS ELEMENT WEIGHT FERCENT’
IF(NTYFE.EQ.,1) FRINTX,y ANALYSES STORED AS OXIDE WEIGHT FERCENT’
FRINT*y" ~

IF(NREDNCT.EQ.0) FRINTXy REDUCTION METHOD NOT SFECIFIED-
IF(NREBCT.EQ.0) GOTO 730

IF(NREDCT.GT.3) FRINTX» ‘REDUCTION CODE =‘,sNREDCT
IF(NREDCT.GT.S) GOTO 750

GOTO (726+727y728,7295730) NREDCT

FRINTXs 'DATA REDUCED WITH MAGIC-IV ROUTINE OF J W COLRY’
GOTO 750

FRINTXs ‘DIATA REDUCTION RY METHOD OF BENCE & ALBEE’

GOoTo 730

FRINTXs ‘DATA REDUCTION BY ARLs G-FACTOR METHOD’

GOTO 750

FRINTX: ‘DATA NOT REDUCED REYONDN K-RATIO CALCULATIONS
GOTO 7350

FRINTXy "DATA REDUCTION BY METHOD OF ZIEROLD & OGILVIE”
FRINTXy” ~

REWIND 4

FRINTX» "

CALL SELECT(LOWERsUFFERs INDFLG» JAVFLGYyRKNUWFLG)
IFCINDFLG.EQ.1) PRINT 735

IFCJAVFLG.EQ.1) FRINT 756

IF(KNWFLG.EQ.1) PRINT 7357

IFCINDFLG.NE.1) LOWER=1

IFCINDFLG.NE.1) UFFER=KOUNTR
IF(LOWER.EQ.Q.AND.UPFER.EQ.0) GOTO 731

DO 731 I=LOWERsUFFER

IF(INDFLG.EQ.1) GOTO 731
IF(JAVFLG.EQ.1.AND,IAVFLG(I) . GT.1 . AND.IAVFLG(I).LT.80) GOTO 751
IF(KNWFLG.EQR.1.AND.IAVFLG(I).GE.B80) GOTO 751

GOTo 731

FRINT Z32sNANAL(I) » (ITITLECJ»I) s J=1+24)

IF{X(I)JNELO) FRINT 740,X(I),Y(I)

FRINT 733 ((BELNAM(JsRK)»J=1+2)sK=1,14)

FRINT 7345 (WTFCT(JyI)»Jd=1+13)

NUMAVG=TAVFLG(I)

IF(IAVFLG(I).GE.BO) NUMAVG=NUMAVG-80
IFC(CIAVFLG(I) .NE.O) .AND.(IAVFLG(I).NE.B0)) PRINT 7435sNUMAVG
PRINT 73Sy (CATION(JsI)sJ=1+15)FEROXY(I)

CONTINUE

REWIND 4

FORMAT(1HO» I3’ TITLE?! ‘“s24A2)

18

Appendix II. Listing of Program RDARL4. (continued)

740 FORMAT (1H+ 60Xy ’X = "sF7.1+3Xs’Y = "9F7.1)
733 FORMAT (SH 12X 14(2A1,53X)y "TOTAL ")
734 FORMAT(SH WT Zrs14(F6.3+1X)sF7.3)
743 FORMAT(1H++ 124Xy AV OF “»I2)
733 FORMAT(SH CAT »14(F6.351X)s1XsF6.351Xy'FER “yF7.35° ANIONS')
735 FORMAT(1HOs "INDIVIDUALLY SELECTED ANALYSES OF ALL TYFES:!’)
7536 FORMAT(1HO» “AVERAGES OF UNKNOWN ANALYSES ONLY!)
757 FORMAT(1HOy ALL KNOWN-UNKNOWN ANALYSES! ")
CALL CHOICE(ANSWER)
IF(ANSWER.EQ. Y) GOTO 730

SELECT FORMAT FOR STORAGE OF DATA IN DISC FILE

VOO0

00 TYFEX,'DISC OUTFUT? (rerlys Y or N)’
ACCEFT 701 ,IRFLYA4
IF(IRFLY4.EQ./N’) GOTO 1999
TYFEXs”’ ¢
TYFEXy ‘PLACE QUTFUT DISC i DRIVE 17
801 TYFEXy " *
BEFLAG1="040
EFLAG2="040
EFLAG3="040
TYPEXs SELECT OUTFUT FILE OFTION FOR ONE OF THE FOLLOWING:Y'

TYPEXy "’ 1 MINCLC S BASIC VIRTUAL ARRAY’

TYPEXy ’ 2 PXvoIin 6 BASIC SEQUENTIAL FILE FOR REGRESSIONS”
TYFEXy, " 3 RECAMF 7 RASIC MINERAL FORMULA RECALCULATIONS’
TYFEX» ' 4 OXIDES 8 EXTRACT ANALYSES OF KNOWN-UNKNOWNS’
TYPEXy” ? BASIC SEQUENTIAL FILE FOR DATA STORAGE-
TYPEX '’) 10 EXIT FROM FROGRAM-

TYFEXy®

ACCEFT 802,IRFLYS
802 FORMAT(I3)
IF(IRPLYS.GT.10) TYFPEX, REFLY OUT OF BROUNDS. TRY AGAIN.’
IFCIRFLYS.G6T.10) GOTO 801
GOTOD (B805,840,860,960,880,900,920:940,1100,1999)yIRFLYS

OFTION 1, MINCLCy COMPLETED JULY 14, 1982

VOO

05 TYFEXy 'YOU ELECTED A MINCLC FILE. NOW YOU MUST ENTER THE IDEAL’
TYFPEXy ‘NUMBER OF CATIONS FER NUMBER OF OXYGENS (f12.7,f12.7)%7
READ(SyBO6LERR=803) CATsOXY
IF(CAT.LE.0.01) GOTO 803
IF(OXY.LE.0.01) GOTO 803
GOTO B804
803 IERR=12
CALL ERRORS(IERRsIREC)
GOTO 805

806 FORMAT(2(F12.7))

804 CALL SETUP(IARLOTsFILSFC)
OFEN(UNIT=2yNAME=FILSFCyERR=807yCARRIAGECONTROL="LIST")
GOTO 809

807 IERR=11
CALL ERRORS(IERRsIREC)
GOTOo 804

809 WRITE (2,808,yERR=807) OXY,CAT

808 FORMAT (12HXXXXRIOXIONS»38X»F10,0+F10.0)

: 19
Appendix II. Listing of Program RDARL4. (continued)

810 CALL SELECT(LOWERyUFFERsINDFLGsJAVFLG,KNWFLG)
IFCINDFLG.NE.1) LOWER=1
IFCINDFLG.NE.1) UFPFER=KOUNTR
D0 825 K=LOWERsUFFER
IFCINDFLG.EQ.1) GOTO 811
IF(JAVFLG.EQ,1,AND.IAVFLG(K) .,GT.1,AND.IAVFLG(K).LT.80) GOTO 811
IF(KNWFLG.EQ.1 . AND.TAVFLG(K) .GE.80) GOTO 811
GOTO B25

811 WRITE(2+8246) Ky (ITITLEC(JsK)sJ=1,24)
IF(NELMTS.GT7.8) GOTO 818
GOTO(B13,814,815,8146,817,818,819) NELMTS-2

813 WRITE(25y833) (((BELNAM(Isd)sI=1+2)sWTPCT(JsR) I v J=143)
GOTO 825

814 WRITE(2s834) (((RELNAM(Is)y I=12)sWTFCT(JsKI) vd=11+4)
GOTO 825

815 WRITE(29835) (((BELNAM(Isd) s I=1+2)yWTFCT(JsKI)»Jd=1,0)

GOTO 825

816 WRITE(2y836) (((RELNAM(I s L) sI=1y2)WTFCTC(JsK))»J=1+6)
GOTO 825

817 WRITE(2s837) CC(RELNAM(I»J) s I=1y2)sWTRFCT(JsKI)y d=1+7)
GOTO 825

818 WRITE(2,838) (((RELNAM(Is D) »I=1+2)yWTFCTC(JrIK))»JI=1,8)
GOTO (B25,819,820,821,822,823,824) NELMTS-7

819 WRITE(2,831)(RELNAMCIs9)»I=1+2)sy(WTFCT(9sK))
GOTO 825

820 WRITE(2+s832) (((BELNAMC(Is D) I=1+2)yWTFCT(JsK)I)»J=9»10)
GOTO 825

821 WRITE(2+s833) (((BELNAM(IsJ)sI=1+2)rWTFCT(JsK))»J=9+11)
GOTO 825

822 WRITE(2+834) (((BELNAM(I s D) »I=1+2)sWTPCT(JsK)I)»J=%512)
GOTO 825

823 WRITE(2,835) (((BELNAM(IsJ)»I=1»2)yWTFCT(J»K))»J=9y13)
GOTO 825

824 WRITE(2y836) (((BELNAM(I+J)rI=1+2)sWTFCT(JsK))yI=9,14)

825 CONTINUE
CALL CHOICE(ANSWER)
IF (ANSWER.EQ.“Y’) GOTO 810

826 FORMAT(I3, " TITLE! ‘24A42)

831 FORMAT(2A1sF6.2y%%")

832 FORMAT(2(2A1,F6.2)57%%")

833 FORMAT(3(2A12F6.2)1 ' $%)

834 FORMAT(4C(2A1»F6.2)57%%")

835 FORMAT(S(2A1sF&6.2) s $%7)

836 FORMATC(O6(2A1,F6.2)s %%

837 FORMAT(7(2A1sF&6.2)r " $%)

838 FORMAT(B8(2A1sF&6.2))
CLOSECUNIT=2)
GOTO 990

OFTION 2y FXVOIDy COMFLETELD AUGUST 18, 1982

40 DO 841 N=1,yKOUNTR

WTFCT(16+N)=0.0 'for elems not analuzed
841 CONTINUE
TYFEXy’You elected a Fortran seaquential file for PXVOILD'
TYPEXs’Your data must be in OXIDE WEIGHT FERCENT'

20
Appendix II. Listing of Program RDARL4. (continued)

TYFEXy’
N0 844y I=1+12 lgsort element names
IFLAG=0

DO 846y J=1sNELMTS
IF(BELNAM(1yJ) .NE.RFXVD(1,1I)) GOTO B45

IFC(RELNAM(2sJ) NEJEFXVD(2yI)) GOTO 845
KCOUNT(I)=J lstores seaquence of WTFCT
IFLAG=1
845 IF(IFLAG.EQ.1) GOTO 844
KCOUNT(I)=164
846 CONTINUE
TYFE B47y (KCOUNT(I)»I=1,13)
847 FORMAT(27H SEQUENCE ELEMENTS FUT QUT:»13(2Xy12))
TYFE%y’A VALUE OF 16 INDICATES ELEMENT NOT ANALYZED - 0.00%"
g42 CALL SETUF(IARLOTsFILSFLC)
OFEN(UNIT=2 yNAME=FILSFCyERR=843yCARRIAGECONTROL="LIST ")
GOTO 844
843 IERR=11
Call ERRORS(IERR+IREC)
GOTO 842
844 WRITE(2y855sERR=843) NTYFE
848 CALL SELECT(LOWERUFPERINDFLG» JAVFLGsKNWFLG)
IF(INDFLG.NE.1) LOWER=1
IF(INDFLG.NE.1) UFFER=KOUNTR
N0 850 N=LOWER:UFFER
IF(INDFLG.EQ.1) GOTO 849
IF(JAVFLG.EQ.1 . AND.IAVFLG{(N) .GT . 1. AND.IAVFLG(N).LT.80) GOTO 849
IF(KNWFLG.EQ.1.AND.JAVFLG(N) .GE.80) GOTO 849
GOTO 850
849 WRITE(2:856) Ns (ITITLEC(LsN)yL=1y24)
WRITE(2,858) (BPFXVD(Jridsd=1s2)yWTFCTC(RKCOUNT (1) sN) v
SCCRPXVUICI s I) o J=192) yWTFCTC(KCOUNTC(I) s N) » I3 7)
WRITE(2:858) ((BFXVDC(JIrIdrd=1se2) s WTFCT(KCOUNT(I)yN)»I=8-13)
850 CONTINUE
835 FORMAT(I1)
856 FORMAT(I3s1Xs24A2,20X)
858 FORMAT(&6(2A1F6.2))
CALL CHOICE (ANSWER)
IF(ANSWER.EQ.’Y’) GOTO 848
CLOSE(UNIT=2)
GOTO 990

c
C OFTION 3, RECAMF, COMFLETED AUGUST 19» 1982
C
8

460 D0 861y N=1yKOUNTR
WTPCT(16/NY=0.0
861 CONTINUE
TYFEX:»’You elected a3 Fortran sequential file for RECAMP’
TYFEXs’
N0 B66s I=1,9
IFLAG=0
0 866y J=1sNELMTS
IF(BELNAM(1,J) .NE.RCAMF(1,1I)) GOTO B65
IF(RELNAM(2sJ) . NE.BCAMF(2y1)) GOTO 84S
KCOUNT(I)=J
IFLAG=1

21

Appendix II. Listing of Program RDARL4. (continued)

866
862

863

867

868
870

871
872

890

OO0

IF(IFLAG.EQ.1) GOTO 866

KCOUNT(I)=16

CONTINUE

CALL SETUF(IARLOT,FILSFC)
OFENCUNIT=2sNAME=FILSFC»ERR=843»CARRIAGE CONTROL="LIST")
GOTO 867

IERR=11

CALL ERRORS(IERR»sIREC)

BFLAGL="N"

GOTO 862

CALL SELECT(LOWERsUFFERyINDFLG»JAVFLGyKNWFLG)
IFCINDFLG.NE.1) LOWER=1

IFCINDFLG.NE.1) UFFER=KOUNTR

Do 870s N=LOWERsUFFER

IF(INDFLG.EQ.1) GOTO 848
IF(JAVFLG.EQ.1 . AND.IAVFLG(N) .GT.1.AND.IAVFLG(N).LT.80) GOTO Bé48
IF(KNWFLG.EQ.1.AND,.IAVFLG(N).GE.B0) GOTO 868

GGTO 870

WRITE(2+,871»ERR=863) Ny (ITITLEC(LsN)»L=1,18)

WRITE(2:,872) ((BCAMF(JsI) o d=1s2) s WTFCT(KCOUNTC(I) sy N)»sI=1s9)
CONTINUE

FORMAT(I3sXs18A2)

FORMAT(9(2A1sF6.2))

CALL CHOICE(ANSWER)

IF(ANSWER.EQ.’Y") GOTO 867

CLOSE(UNIT=2)

GOTO 990

OFTION 5» DIRECT ACCESS FILE, COMFLETED JULY 6 1982

TYFEXy "YOU CHOSE A VIRTUAL (DIRECT ACCESS) DISC ARRAY FILE. ALL DATA’
TYPEX, "ARE FUT OUTF SELECTION OF DATA IS NOT YET FOSSIBLE (8/31/82).°
TYFE 881,y (IARLOT(I)yI=1,3)

FORMAT(1HO,y ' THE ARLEE QUTFUT FILENAME WAS 7 ,3A2)

TYFEXs "ENTER ERASIC VIRTUAL ARRAY FILESFEC AS LY?!??7?777,.77%7
TYPEXy ' ~/

LENGTH=4X(NELMTS+1)+3 ilendth of each record in 2-bgte words

CALL ASSIGN(Z2y’ “»-1)

DEFINE FILE 2 (KOUNTRsLENGTHsUsNREC)

NREC=1

DO 890 I=1,KOUNTR

WRITE(2/NREC) KOUNTRyNANALCI) s NELMTS» CUTFCT(JsI) s J=1yNELMTS),
SWTPCT(1SyI) s (CATIONC(JIyI) »yJ=1yNELMTS)»CATION(1S,I)

CONTINUE

CLOSE(UNIT=2)

TYPEXsNRECy’ RECORDS WERE FPUT OUT TO DISC.’

TYFEX» ‘EACH RECORID CONSISTS OF’>LENGTHy’ 2-BYTE WORDS.’

GOaTO 990

OFTION 6» BASIC REGRESSION FILE, COMFLETED AUGUST 3y 1982

TYFEX,» 'YOU SELECTED A MINC RASIC SEQUENTIAL FILE FORMATTED FOR THE’
TYFEX» MINC CORRELATION MATRIX AND REGRESSIONS. THESE FROGRAMS ARE-
TYFEX, "LIMITED TO 75 ANALYSES. YOU WILL NEED TO HAVE SELECTED YOUR'
TYPEX:, ANALYSES IN ADVAN<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>